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The relationship between the current density j in a plasma and the electric field inten- 
sity E is nonlinear in the case of strong electric fields. The nonlinearity of the initial 
equations engenders difficulties in computing the current density vector field in the me- 

dium. These can be eliminated by investigating the electrodynamics equations in the 
hodograph plane where they are linear. Emets [l] transformed the electrodynamics equa- 
tions from the physical into the hodograph plane in the case of two-dimen- 

sional steady fields for an arbitrary relationship between the electrical conductivity 0 
and the current density. Investigation of electrodynamic processes in plasmas for a spe- 
cific c (I) determined by the state of the plasma is a natural extension of his findings. 
We shal! write out the electrodynamics equations in the hodograph plane for a highly 
ionized plasma with allowance for elastic electron-ion collections. We shall then sepa- 
rate variables to obtain the general solutions of these equations and use these solutions 
to solve the problem of the current in an infinite vessel with nonconductive walls which 

is analogous to the problem of gas escape from an infinite vessel p]. 
Since practical considerations make it impossible to allow for the effects of all factors 

(ionization, radiation, inelastic collisions.etc.) on the function, CJ (1) in strong electric 
fields, we propose that this function be approximated by a power (or exponential) func- 

tion in which the constant parameters mus be determined experimentally. In the present 

paper we solve the problem of the current in a vessel with nonconductive walls for a 

power function a (i, . An exponential function Q (1) makes it possible to formulate mixed 

boundary value problems for the electrodynamics equations, 

1, The following relations are valid [l and 33 in a highly ionized plasma (with allow- 
ance for elastic electron-ion collisions) : 

HereT, T, are the effective temperatures of the heavy particles and the electrons ; 

M is the mass of the heavy particle ; k is the Boltzmann constant ; vas, V maQ are propor- 

tional to the local kinetic energies of the plasma and the electrons ; 00 is the electrical 

(I.11 

conductivity in the plasma when T, = 2’; fl is the electron concentration ; v is the direc- 
tional electron velocity, e is the electron charge ; Y is a constant. 

Assuming that T = const, M = const, 00 = const, y > ‘Is, N = const in a given 
state of the plasma, we can write 

I-2 = i da '2ri2 -y= 
0 UI 

ia (io2 = N2e2v02 = co&) (1.2) 

Let us introduce the equations for the electrical current in the hodograph plane Cl], 

(1.3) 
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@Q I- I’s a%J 
7p-+ p as -----$I, 

[ 
+I-) v=O 1 aQ (cant) 

Here. 6 ,is the angle between the vector j and the z-axis ; the potential stream function 
P’and the force stream function 0 are given by the following expressions : 

ix 
_~icos(+22!!t~aQ 

Go ax ay ’ iv = i sin e +&g (Ezg!) (1.4) 

Recalling ( f. 2), we can rewrite expressions (1.3) as 

@P i - 235 SP 
2E (1 - EIB ak” + 24 3@-+2(~-w+T4-~) ag=o (‘1.5) 

aaQ 
% (u - or qz- + kp$+___ 2(i~~(1--1E-2~+2~Es+21a~a)~~o (1.6) 

I? IX _--- 
E - 2r -I= + io’d (1.7) 

It is clear that E < 1. Equations (1.5) and (1.6) are elliptic for E < Vsl)‘- < i , 

2, Separation of variables in Eqs. (1.5) and (1.6) yields the following result. Express- 

ing the function P (E, 6)as P, (6, 0) = f& (e)~, (6) (2.1) 

we infer from Eq. (1.5) that T, (6) satisfies the relation T” + VT = 0 (A is an arbitrary 
parameter which is determined as an eigenvafue of the S~rn-Liouville problem in sol- 
ving the boundary value problem). Hence, 

(2.2) 
T~@)==C#’ + CIC-ihe for I # 0, r. (e) = A + Be for h = 0, (A, B, Cl, C, = con&) 

FOI h # 0 the function fh (8 satisfies Riemann’s P-equation [4] 

I 

0 00 1 

f=P l/& 0 ‘/a (T + Th) f 

-w 
form 

1-7 ‘h fr--+rb) 
and can be expressed in the 

I 

fh (4) = EL’*’ (4; - l)“z(y+yi) {CaF Wz (A + 7) + ‘/aTa, 1 + l/a (k - T) + 

+ ‘f aTA, 1 + h D + GEeAF (l/z fT - W + lfaTh* *- l/z (b + 7) + (2.3) 

Jr%Y~l t- 1L, e,,; (TX =J&-(2y - 1)&P) 

Here Cs, C, are constants. I is not an integer, and p (a,,&, e, E) is the hypergeometric 
function 

fo (E) = cs + CB s (I -;)‘” dk for h =O (2.4) 

Similarly, we can express the function Q (&, e) in the form 

q. (e) = c7 + cse, ~(o=cP+clo~s~l~~~+~~~ for h =0 (2.7) 

(C7, C8, cs, C1o=const) 

3, Separation of variables can be used to solve several boundary value problems, one 

of which is analogous to the problem of gas escape from an infinite vessel @I. 
Let us consider an infinite vessel with symmetric nonconductive walls filled with a 

highly ionized plasma. An opening in the vessel is fitted with a cathode of width BB’ = 
= 2b (Fig. 1). We are to determine the current density field in the vessel assuming that 
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the process is steady and two-dimensional, that the charge density is the same at all 
points of the electrode, and that %I < Vay-r (%I corresponds to the current density ir at 
the vessel outlet) ; the layer adjacent to the electrode is not taken into’accounr. 

Carried into the hodograph plane (%% = % cos 0, 

E, = % ain 8). the problem can be stated as follows : 

we are to determine the function Q(%, 0) in the sector 

O< %< %ir- @a < 8 < @e(Fig, 2) from the boundary 

‘Onditions Q (%, 00) = - ‘&I (0 < % d 6) 
; ;; ;,eo, = “/a 1 (0 < % < %I) (3.1) 

* 
f =-rI,z (o<eaot 

Q t%:: $1 = ‘1s Z (- Ro d 8 < 01 
where I is the current snength at the vessel outlet, 

2bE,l’$ 
Z = 2i8 = o _ hf,r (3.2) 

Moreover, by symmetry, 
Fig. 1 Q (E, 0) = 0 (0 < % < %I) (3.3) 

Separation of variables yields the solution of the above boundary value problem in a 
form similar to the solution of Chaplygin’s jet problem, i, e, 

where 

x F (h + ‘/zr + %r,, h + 1- ‘/2-r + ‘/2rx; 1 4 W 4) + 

+ (1 + 2W (h + ‘/ST + ‘/ilJ @ + 1 - ‘/zr + l/zr&) p (1 + h t vzr + 

+ Wry, 2 + A - ‘IaT + V/zYhi 2 + 2% a]} (3.5) 

T& = V’rs - (21- If 4hS 

Reiation (3.4) enables us to determine the current density j at any point inside the 

vessel. 
6, 8) 

& 

4. Allowance for all the factors affecting the relationship 
between u and J’ (electron-electron collisions, ionization, 

A 5 radiation, etc. ) is very difficult and practically impossible 

&f G 
for plasmas with any degree of ionization, and even for high- 

ly ionized plasmas. It is therefore expedient to approximate 

6 the function CT (if by some curve, e.g. in the form(i) = al”*, 
where the parameters a and a must be determined experi- 

Fig. 2 mentally and are assumed constant within given intervals of 
variation of j. With the function specified in this way 

the electrodynamics equations in the hodograph plane fEqs. (1.3)] become 

@P 1 
~+~$$+l~$Lo (4.1) 

~+l~$$+~?&o (4.2) 

Separation of variables yields the solution of Eq. (4.2) in the form 
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where 

gi (0) = C*P + C&-~he (aA = I/l/4as + hs (1 - u)) 
for k#O,and 

(4.3) 

($0 (11 = A + BiQ, 90 03) = C’+ DB (Cl, C,, C,, C,, A, B, C, D = const) 
for h = 0. 

The parameter I is determined as an eigenvalue of the Sturm-Liouville problem. 

The solution of the problem of Sect. 3 in this case becomes 

Q (i, e) = - $j-. 8 - 
0 

where j1 is the current density at the vessel outlet and a < 1. If the function IS (I) can 
be expressed in the form e = beis, where b and b must be determined experimentally 
and are constant within given intervals of variation of j, then Eqs. (1.3) become 

@P 1 
F++q+lyt&o 

s+ 
I-iip+ i2P2W 

yq+ i(f-ijp) ,i=o (4.5) 

Unlike relations (4.1) and (4.2), Eqs. (4.5) do not exclude smooth transition of the 
process from the ellipticity to the hyperbolic@ domain for a constant a. This makes 
it possible to formulate mixed boundary value problems for the electrodynamics equa- 
tions in the hodograph plane. We note, however, that A. G. Kulikovskii and S. A, Regrer 

(PMM Vol. 32, Ng4, 1968) demonstrated the impossibility of formulating boundary value 
problems in purely hyperbolic domains. 

The author is grateful to S. V. Fal’kovich for his useful remarks. 
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